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Abstract

The undamped natural vibrations of a constrained linear structure are given by the solutions to a generalized eigenvalue

problem derived from the equations of motion for the constrained system involving Lagrangian multipliers. The eigenvalue

problem derived is defined by the mass matrix of the unconstrained structure and a non-symmetric and singular stiffness

matrix for the constrained system. The character of the solution of the eigenvalue problem of the constrained system is

stated and proved in a Theorem. Applications of the constrained eigenvalue problem to some simple structures are

demonstrated. Finally a condition for the calculation of the damped natural vibrations for the constrained structure in

terms of the undamped mode shapes is formulated.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

One of the most elementary subjects that need to be considered by designers of today is the dynamic
behavior of a structure exposed to an external excitation. It can be described by the modal properties of the
structure which are characterized by the natural frequencies and the corresponding mode shapes.

If an analysis reveals that the structure has unwanted modal properties, there is a need to modify the
structure in order to obtain desired modal properties. A solution to this problem, where changes in mass- or
stiffness-properties aim at a change in the performance of the structural resonances, is referred to as a
structural modification. One way to obtain such a modification may be to introduce constraints on the
mechanical structure. This technique has been investigated by several authors using Lagrangian multipliers or
other approaches, see for instance, Refs. [1–4] and references cited therein. A survey of this research field is
given in the review article by Kerstens [5].

In this paper the Lagrangian multiplier technique is used. The undamped natural vibrations of a constrained
linear structure are given by the solutions to a generalized eigenvalue problem derived from the equations of
motion for the constrained system involving Lagrangian multipliers. The eigenvalue problem derived is
defined by the mass matrix of the unconstrained structure and a non-symmetric and singular stiffness matrix
for the constrained system.
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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The main objective of this paper, an investigation of the consequences of the Lagrangian multiplier
approach, is of a theoretical nature. The resulting dynamical equation (Eq. (4.10)) will certainly
not be the most efficient formulation from the numerical point of view but it is a logical consequence
of the Lagrangian approach and it may give some additional insight into the general character of
the solution to the constrained problem. The non-symmetric and singular character of the obtained
stiffness matrix is a consequence of the fact that the original coordinates are retained. This paper
demonstrates how constrained modes are obtained by using certain projection operators associated with the
so-called constraint matrix. The numerical examples submitted, serve as simple illustrations of the contents of
Theorem 1.

The major contributions of this paper are the statements made in Theorems 1 and 2, together with
their proofs. Statements similar to the content of Theorem 1 may be found in the literature, see Refs. [2,4],
but the proof here is new and it displays in detail the mathematical structure of the solution to the
constrained problem. Theorem 2, which is of some novelty, contains a necessary and sufficient
condition for the calculation of the damped natural vibrations for the constrained structure in terms of the
undamped mode shapes and it also opens for some new questions concerning the constrained damped
vibration problem.

2. Notation

In this paper R denotes the set of real numbers and C the set of complex numbers. The set of n-dimensional,
real column vectors is denoted by Rn � Rn�1 and the null vector in Rn is written 0n. R

m�n denotes the set of real
matrices of order m� n with the null matrix written 0m� n. If A 2 Rm�n then AT

2 Rn�m is the transpose of A.
The rank of a matrix A 2 Rm�n is written rank(A). If A is a square matrix, i.e., n ¼ m, then det(A) denotes the
determinant of A and if det(A) 6¼0 then A�1 denotes its inverse. In� n denotes the identity matrix in Rn�n. Let
A 2 Rm�n, then the following linear spaces associated with A will be employed:

rangeðAÞ ¼ x 2 Rnjx ¼ Au; u 2 Rmf g; kernelðAÞ ¼ u 2 Rnj Au ¼ 0mf g.

If V is a linear subspace of Rn then the dimension of V is denoted dimðVÞ and the orthogonal complement
of V, V?, is defined by

V? ¼ y 2 Rn
��yTx ¼ 0; 8x 2V

� �
.

3. Preliminaries

Consider the free, undamped vibrations of an n-degree-of-freedom (dof) undamped mechanical structure.
This is modelled by the system of linear, second-order differential equations

M€qþ Kq ¼ 0n (3.1)

with a mass matrix M 2 Rn�n which, throughout this paper, is assumed to be symmetric and positive definite,
and a stiffness matrix K 2 Rn�n which is assumed to be symmetric and positive semi-definite. The
configuration coordinates of the structure are given by the vector q ¼ ½q1q2 . . . qn�

T 2 Rn; q ¼ qðtÞ. A solution
to Eq. (3.1) is given by

q ¼ x sin ot, (3.2)

where x and o satisfy the linear system of equations defining the generalized eigenvalue problem

ð�o2Mþ KÞx ¼ 0 (3.3)

and x 2 Rn is a constant vector, here referred to as the mode shape.
The existence of non-trivial solutions, xa0, to Eq. (3.3) requires that the angular frequency o satisfies the

secular equation

detð�o2Mþ KÞ ¼ 0, (3.4)
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where the roots of Eq. (3.4), the natural frequencies of the structure, and the corresponding mode shape
vectors are denoted by

0po2
1po2

2p � � �po2
n and x1;x2; . . . ; xn, (3.5)

respectively, so that

ð�o2
i Mþ KÞxi ¼ 0; i ¼ 1; 2; . . . ; n (3.6)

is satisfied. The mode shapes x1;x2; . . . ;xn may be chosen as linearly independent, satisfying xTi Mxj ¼ 0; iaj.
It is convenient to assemble the mode shape vectors in the non-singular modal matrix X ¼ ½x1 x2 . . . xn�, and
the corresponding natural frequencies in the diagonal spectral matrix X2

¼ diagðo2
1 o

2
2 . . .o

2
nÞ. A normal-

ization of the modal matrix with respect to the mass matrix is obtained using the requirement XTMX ¼ In�n

nd then XTKX ¼ X2. We will subsequently refer to the structure discussed above as the unconstrained

structure.
4. The constrained structure

A set of linear constraints on the unconstrained structure is now introduced. These are defined by the
following m; 1pmpn, independent linear equations

a11q1 þ a12q2 þ � � � þ a1nqn ¼ 0;

a21q1 þ a22q2 þ � � � þ a2nqn ¼ 0;

..

.

am1q1 þ am2q2 þ � � � þ amnqn ¼ 0;

8>>>>><
>>>>>:

(4.1)

or in more compact notation

Aq ¼ 0m, (4.2)

where the constant matrix A ¼ ½aij � 2 Rm�n is assumed to be of full rank, i.e. rank(A) ¼ m. The configuration
space of the constrained system is the linear subspace C in Rn, defined by C ¼ kernelðAÞ ¼ ðrangeðAT

ÞÞ
? where

dimðCÞ ¼ k ¼ n�m.
In this paper the problem of calculating the natural vibrations of a mechanical structure defined by the mass

matrix M and the stiffness matrix K and subjected to the constraints defined by Eq. (4.2) will be studied. A
direct approach to this problem would be to solve for m of the coordinates q1; q2; . . . ; qn in terms of the
remaining n�m and thereafter calculate the mass and stiffness matrices corresponding to the reduced structure
described by these k ¼ n�m independent configuration coordinates. This could, for instance, be done by a
rearrangement of the q-coordinates so that the constraint matrix A may be written A ¼ ½A1A2� 2 Rm�n, c.f.
Ref. [6], where A1 2 Rm�m is non-singular and A2 2 Rm�k. This is always possible since A has full rank. The
constraint condition may then be written

Aq ¼ ½A1A2�
q1

q2

" #
¼ 0, (4.3)

where q1 2 Rm and q2 2 R
k. This implies

Mr €q2 þ Krq2 ¼ 0, (4.4)

where the mass- and stiffness-matrices of the reduced system are defined by

Mr ¼ RTMR 2 Rk�k; Kr ¼ RTKR 2 Rk�k and R ¼
�A�11 A2

Ik�k

" #
. (4.5)

The matrix Mr is, obviously, symmetric and positive definite, and Kr is symmetric and positive semi-definite.
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In the following discussion, however, we will stay with the original set of generalized coordinates q. The
equations of motion for the constrained system may then be written as

M€qþ Kq ¼ ATk, (4.6)

where Lagrangian multipliers k ¼ kðtÞ ¼ ½l1l2 . . . lm�
T 2 Rm�1 have been introduced, cf. Ref. [7]. From

Eqs. (4.2) and (4.6) it follows that

0m ¼ A€q ¼ �AM�1Kqþ Ck, (4.7)

where

C ¼ AM�1AT
2 Rm�m (4.8)

is a symmetric and positive definite matrix. The symmetry is obvious and the positive definiteness follows from
the following argument. If u 2 Rm, then

uTCu ¼ ðATuÞTM�1ATu403ATua03ua0

since A has full rank and M�1 is positive definite. Since C is non-singular, k, in Eq. (4.6), can be obtained from
Eq. (4.8), i.e.

k ¼ C�1AM�1Kq. (4.9)

Substituting this into Eq. (4.6), gives the following equation:

M€qþ Kcq ¼ 0, (4.10)

where

Kc ¼ QK (4.11)

is the constrained stiffness matrix and

Q ¼ In�n � P, (4.12)

where

P ¼ ATC�1AM�1. (4.13)

Remark 1. Note that if the mechanical structure is completely constrained, i.e. if m ¼ n, then A 2 Rn�n is non-
singular, and from Eqs. (4.8) and (4.12) P ¼ In�n and, then, Kc ¼ 0n�n.

Remark 2. An equation similar to Eq. (4.10) is presented in Refs. [2,4].

Proposition 1. P and Q are projections and P 6¼0. range(AT) is a linear subspace of range(P).

Proof. From Eqs. (4.12) and (4.8) P ¼ ATC�1AM�1 ¼ AT
ðAM�1AT

Þ
�1AM�1 and, then

P2 ¼ AT
ðAM�1AT

Þ
�1AM�1AT

ðAM�1AT
Þ
�1AM�1 ¼ AT

ðAM�1AT
Þ
�1AM�1 ¼ P

and

Q2 ¼ ðIn�n � PÞ2 ¼ In�n � 2Pþ P2 ¼ In�n � P ¼ Q

demonstrating that P and Q are projections. For the second part of the Proposition, take x 2 rangeðAT
Þ then

x ¼ ATu; u 2 Rm and

Px ¼ PATu ¼ AT
ðAM�1AT

Þ
�1AM�1ATu ¼ ATu ¼ x

and consequently, x 2 rangeðPÞ. Since rankðAT
Þ ¼ mX1 it is concluded that P6¼0. &



ARTICLE IN PRESS
P. Lidström, P. Olsson / Journal of Sound and Vibration 301 (2007) 341–354 345
Proposition 2. Kc is singular and, in general, non-symmetric.

Proof. From Eq. (4.11) it follows that detðKcÞ ¼ detðQÞ detðKÞ ¼ 0 since Q is a projection, not equal to the
identity, and then obviously detðQÞ ¼ 0. The non-symmetry is obtained by the following argument; Let xi and
xj be arbitrary mode shape vectors of the unconstrained structure. Then

xTj Kcxi ¼ xTj Kxi � xTj A
TC�1AM�1Kxi ¼ xTj Kxi � o2

i x
T
j A

TC�1Axi

axTi Kxj � o2
j x

T
i A

TC�1Axj ¼ xTi Kxj � xTi A
TC�1AM�1Kxj ¼ xTi Kcxj,

since in general, o2
i ao2

j ; iaj. &

The projection P is not orthogonal but, according to Proposition 3 below, an orthogonal projection may be
obtained through a similarity transformation of P, using the mass matrix.

Proposition 3. P ¼M�1=2PM1=2 is an orthogonal projection and

rangeðPÞ ¼ rangeðM�1=2AT
Þ. (4.14)

The following result, cf. Heath [8], leads to a proof of Proposition 3.

Lemma 1. Let L 2 Rn�m be a linear mapping. Then

LðLTLÞ�1LT 2 Rn�n (4.15)

is an orthogonal projection and rangeðLðLTLÞ�1LTÞ ¼ rangeðLÞ.

Proof of Lemma 1. Obviously LðLTLÞ�1LT is symmetric and

ðLðLTLÞ�1LTÞ
2
¼ LðLTLÞ�1LTLðLTLÞ�1LT ¼ LðLTLÞ�1LT.

Assume that x 2 rangeðLÞ. Then x ¼ Lu for some u 2 Rm and

LðLTLÞ�1LTx ¼ LðLTLÞ�1LTLu ¼ Lu ¼ x) x 2 rangeðLðLTLÞ�1LTÞ.

On the other hand, assume that x 2 rangeðLðLTLÞ�1LTÞ. Then

LðLTLÞ�1LTx ¼ x) xT ¼ xTLðLTLÞ�1LT,

and if y 2 kernelðLTÞ then xTy ¼ xTLðLTLÞ�1LTy ¼ 0, which means that

x 2 ðkernelðLTÞÞ
?
¼ rangeðLÞ

and this concludes the proof of the Lemma. &

Proof of Proposition 3. By taking L ¼ ðAM�1=2ÞT the projection P may be written as

P ¼M�1=2PM1=2 ¼M�1=2ATC�1AM�1=2 ¼ ðAM�1=2ÞTðAM�1=2ðAM�1=2ÞTÞ�1AM�1=2

¼ LðLT LÞ�1LT

and the Proposition follows from Lemma 1. &

The free vibrations, according to Eq. (3.2), of the constrained structure are determined by the eigenvalue
problem

ð�o2
cMþ KcÞx ¼ 0 (4.16)
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and the constraint condition

Ax ¼ 0m. (4.17)

Note that 0m ¼ Aq ¼ Ax sin ot; 8t; oa03Ax ¼ 0m. In the case of a completely constrained structure,
Kc ¼ 0n�n, and condition (4.16) gives

�o2
cMx ¼ 0, (4.18)

with the conclusion that if x6¼0 then o2
c ¼ 0. This corresponds to a rigid body mode and the solution to (4.10)

may be written

q ¼ atþ b. (4.19)

However, the constraint condition requires that Aq ¼ 0 and since A, in this case, is non-singular it trivially
follows that a ¼ b ¼ 0.

Let the solution to the eigenvalue problem (4.16), i.e. the natural frequencies of the constrained structure
and the corresponding mode shapes, be denoted by

o2
c;1;o

2
c;2; . . . ;o

2
c;n and xc;1; xc;2; . . . ; xc;n, (4.20)

respectively. The mode shape vectors of the constrained structure may be collected in the modal matrix
Xc ¼ ½xc;1 xc;2 . . . xc;n� and the corresponding natural frequencies in the spectral matrix
X2

c ¼ diagðo2
c;1 o

2
c;2 . . .o

2
c;nÞ.

Theorem 1. If K is positive definite then the natural frequencies of the constrained structure, o2
c;i; 1pipn, are

real and non-negative. The m first natural frequencies are equal to zero

o2
c;1 ¼ o2

c;2 ¼ � � � ¼ o2
c;m ¼ 0 (4.21)

and the following k natural frequencies are positive

0oo2
c;mþ1po2

c;mþ2p � � �po2
c;n. (4.22)

The modal matrix Xc is non-singular, and if the natural frequencies in Eq. (4.22) all are separated, i.e.

o2
c;mþ1oo2

c;mþ2o � � �oo2
c;n (4.23)

then

XT
c MXc ¼

G HT

H Ik�k

" #
(4.24)

where k ¼ n�m, G 2 Rm�m is symmetric and H 2 Rk�m. Furthermore

Axc;ia0; i ¼ 1; . . . ;m and Axc;mþi ¼ 0; i ¼ 1; . . . ; k, (4.25)

i.e. the mode shape vectors xc;mþ1; xc;mþ2; . . . ; xc;n satisfy the constraint condition but the mode shape vectors

xc;1;xc;2; . . . ;xc;m do not.

Proof. By performing the coordinate transformation q ¼M�1=2z the equations of motion (4.10) may be
written

€zþ KM ;cz ¼ 0, (4.26)

where

KM ;c ¼ UKM , (4.27)

U ¼ I�P, KM ¼M�1=2KM�1=2. Assuming a solution z ¼ zðtÞ ¼ w sin ot the necessary condition

ð�o2
cIþ KM;cÞw ¼ 0 (4.28)
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is obtained, where w 6¼0 is a constant vector in Rn. From Eq. (4.17) we have the constraint requirement
AM�1=2w ¼ 0m. The secular equation, corresponding to Eq. (4.28), reads

detð�o2
cIþ KM ;cÞ ¼ 0. (4.29)

Since detðKM ;cÞ ¼ 0, o2
c ¼ 0 is a solution to Eq. (4.29) and thus

KM ;cw ¼ UKMw ¼ UM�1=2KM�1=2w ¼ 0. (4.30)

This implies that M�1=2KM�1=2w 2 rangeðM�1=2AT
Þ and, consequently, KM�1=2w 2 rangeðAT

Þ, which means
that x ¼M�1=2w ¼ K�1ATu 2 Rn, u 2 Rm. Now, if

AT
¼ ½a1 a2 . . . am�; ai ¼ ½ai1 ai2 . . . ain�

T

linear independent solutions to (4.30) can be chosen as

wi ¼M1=2K�1ai; i ¼ 1; . . . ;m (4.31)

Due to the assumption that K is positive definite it follows that aTi K
�1ai40 and this implies that the constraint

requirement Axi ¼ AM�1=2wi ¼ 0m; i ¼ 1; . . . ;m is not satisfied, since AM�1=2wi ¼ AK�1aia0m.
If o2

ca0, operating with P on Eq. (4.28) gives

Pw ¼ 0 and thus Uw ¼ w (4.32)

and hence, from Eq. (4.28) it follows that

ð�o2
cIþWÞw ¼ 0, (4.33)

where

W ¼ KM ;cU ¼ UKMU ¼ UM�1=2KM�1=2U 2 Rn�n (4.34)

is obviously symmetric and positive semi-definite, which implies o2
c 2 R and o2

cX0. On the other hand by
assuming that wa0, o2

ca0 is a solution to the eigenvalue problem Eq. (4.33) and by operating with P on Eq.
(4.33) one obtains Pw ¼ 0 and consequently Uw ¼ w and this inserted into Eq. (4.33) proves Eq. (4.28). We
may thus conclude that wa0, o240 is a solution to the eigenvalue problem (4.28) if and only if it is a solution
to Eq. (4.33). Now

w 2 kernelðUÞ ) Ww ¼ 0 (4.35)

and thus, since dimðkernelðUÞÞ ¼ dimðrangeðM�1=2AT
ÞÞ ¼ m, there are m linearly independent eigenvectors to

W corresponding to the eigenvalue zero. Note however that, in general, w 2 kernelðUÞRKM;cw ¼ 0. Since W is
symmetric there are k additional linearly independent eigenvectors wmþ1;wmþ2; . . . ;wmþk 2 rangeðUÞ
corresponding to the eigenvalues (4.22), i.e.

Wwmþi ¼ o2
c;mþiwmþi; i ¼ 1; . . . ; k. (4.36)

From Eq. (4.23) it follows that these vectors are uniquely defined, up to an arbitrary real constant, and due
to the symmetry of W they may be chosen as orthonormal, i.e.

wT
mþiwmþj ¼ dij ; 1pi; jpk. (4.37)

Furthermore

o2
c;mþi ¼ wT

mþiWwmþi ¼ wT
mþiUM�1=2KM�1=2Uwmþi

¼ ðM�1=2wmþiÞ
TKM�1=2wmþi40; i ¼ 1; . . . ; k ð4:38Þ

since K is assumed to be positive definite. From

kernelðAM�1=2Þ ¼ ðrangeðM�1=2AT
Þ
?
Þ ¼ rangeðUÞ (4.39)
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we may conclude that

AM�1=2wmþi ¼ 0m; i ¼ 1; . . . ; k. (4.40)

Thus, by taking

xc;1 ¼ K�1a1; xc;2 ¼ K�1a2; . . . ;xc;m ¼ K�1am;

xc;mþ1 ¼M�1=2wmþ1; xc;mþ2 ¼M�1=2wmþ2; . . . ;xc;mþk ¼M�1=2wmþk
(4.41)

it follows that xc;i; i ¼ 1; . . . ; n are linearly independent and

ð�o2
c;iMþ KcÞxc;i ¼ 0;

Axc;ia0; i ¼ 1; . . . ;m and Axc;mþi ¼ 0; i ¼ 1; . . . ; k
(4.42)

and

xTc;mþiMxc;mþj ¼ wT
mþiM

�1=2MM�1=2wmþj ¼ wT
mþiwmþj ¼ dij ; 1pi; jpk. (4.43)

The modal matrix of the eigenvalue problem (4.10), under the presumption that K is positive definite, is
therefore given by

Xc ¼ ½xc;1 . . . xc;m xc;mþ1 . . . xc;n� ¼ ½K
�1a1 . . .K

�1am M�1=2wmþ1 . . .M
�1=2wmþk� (4.44)

and thus

MXc ¼ ½MK�1a1 . . .MK�1am M1=2wmþ1 . . .M
1=2wmþk� (4.45)

which gives

XT
c MXc ¼

G HT

H Ik�k

" #
, (4.46)

where

G ¼

aT1K
�1MK�1a1 . . . aT1K

�1MK�1am

..

. . .
. ..

.

aTmK
�1MK�1a1 . . . aT1K

�1MK�1am

2
6664

3
7775 2 Rm�m; GT

¼ G, (4.47)

H ¼

wT
mþ1M

1=2K�1a1 . . . wT
mþ1M

1=2K�1am

..

. . .
. ..

.

wT
mþkM

1=2K�1a1 . . . wT
mþkM

1=2K�1am

2
6664

3
7775 2 Rk�m. (4.48)

This concludes the proof. &

The first m modes, with natural frequencies all equal to zero do not satisfy the constraint condition, i.e.
Axc;ia0; i ¼ 1; . . . ;m and should therefore be ignored. The remaining positive natural frequencies and their
corresponding mode shape vectors

0oo2
c;mþ1oo2

c;mþ2o � � �oo2
c;n and xc;mþ1;xc;mþ2; . . . ;xc;n (4.49)

represent the vibration modes of the constrained structure.

Remark 1. The requirement in Eq. (4.23) may, of course, be lifted since the matrix W is symmetric. The mode
shapes in Eq. (4.49) will then, however, not be uniquely defined.
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Remark 2. The requirement in the theorem, that the stiffness matrix is positive definite, may also be lifted,

resulting in the possibility of constrained rigid body modes with the spectrum

0 ¼ o2
c;mþ1 ¼ o2

c;mþ2 ¼ � � � ¼ o2
c;mþrpo2

c;mþrp � � �po2
c;n, (4.50)

where the first r natural frequencies, 0prpk, correspond to rigid body modes. The representation (4.24) will
then be replaced by

XT
c MXc ¼

G HT

H J

" #
, (4.51)

where

J ¼
0r�r 0r�ðk�rÞ

0ðk�rÞ�r Iðk�rÞ�ðk�rÞ

" #
. (4.52)

Remark 3. Note that the set s1 ¼ Sw1; s2 ¼ Sw2; . . . ; sm ¼ Swm, where S 2 Rn�n is any non-singular matrix,
may replace w1;w2; . . . ;wm, defined by Eq. (4.31), as a solution to the eigenvalue problem (4.28) with o2

c ¼ 0.

Remark 4. Due to the separation theorem by Lord Rayleigh [9], we may conclude that the eigenvalues o2
c of

the constrained structure are bracketed by those of the unconstrained structure according to

o2
i po2

c;mþipo2
iþm; i ¼ 1; 2; . . . ; n�m. (4.53)

5. Examples

In all the examples below the modal matrix is normalized with respect to the mass matrix.

Example 1. The following data is given for an unconstrained structure with three dofs, n ¼ 3, see Fig. 1.

M ¼

0:5 0 0

0 1:0 0

0 0 1:5

2
64

3
75; K ¼

3000 �1000 �1000

�1000 3000 �1000

�1000 �1000 3000

2
64

3
75,

with m1 ¼ 0:5 kg; m2 ¼ 1:0 kg; m3 ¼ 1:5 kg; k1 ¼ � � � ¼ k6 ¼ 1000Nm�1. The corresponding modal and
spectral matrices are determined to

X ¼

0:4639 0:2181 �1:3181

0:5361 0:7819 0:3181

0:6351 �0:4932 0:1419

2
64

3
75; X2

¼ diagð950 3352 6698Þ.

A constrained system is now defined by A ¼ ½ 0 1 �1 � and the constraint

Aq ¼ ½ 0 1 �1 �

q1

q2

q3

2
64

3
75 ¼ q2 � q3 ¼ 0

P. Lidström, P. Olsson / Journal of Sound and Vibration 301 (2007) 341–354 349
Fig. 1. The unconstrained structure of Example 1.
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is rigidly connecting the 2nd and 3rd coordinates which is equivalent to letting k5-N. From Eq. (4.11) the
constrained stiffness matrix

Kc ¼

3000 �1000 �1000

�800 800 800

�1200 1200 1200

2
64

3
75

is obtained. The corresponding modal and spectral matrices are

Xc ¼

0 0:4734 1:3326

0:6325 0:5960 �0:2117

�0:6325 0:5960 �0:2117

2
64

3
75; X2

c ¼ diagð0 964 6635Þ,

where the first column in Xc and the first diagonal element in X2
c ; O

2
c;11 ¼ 0, should be ignored since Axc;1a0

Note that Axc;2 ¼ Axc;3 ¼ 0 and that the Rayleigh separation theorem is fulfilled.

Example 2. The following data, given for an unconstrained structure with six dofs, n ¼ 6, see Fig. 2,
corresponds to a linear array of equal masses and springs.

M ¼

m 0 0 0 0 0

0 m 0 0 0 0

0 0 m 0 0 0

0 0 0 m 0 0

0 0 0 0 m 0

0 0 0 0 0 m

2
666666664

3
777777775
; K ¼

2k �k 0 0 0 0

�k 2k �k 0 0 0

0 �k 2k �k 0 0

0 0 �k 2k �k 0

0 0 0 �k 2k �k

0 0 0 0 �k 2k

2
666666664

3
777777775
,

where m ¼ 2 and k ¼ 1000. The corresponding modal and spectral matrices are

X ¼

0:1640 �0:2955 �0:3685 0:3685 0:2955 0:1640

0:2955 �0:3685 �0:1640 �0:1640 �0:3685 �0:2955

0:3685 �0:1640 0:2955 �0:2955 0:1640 0:3685

0:3685 0:1640 0:2955 0:2955 0:1640 �0:3685

0:2955 0:3685 �0:1640 0:1640 �0:3685 0:2955

0:1640 0:2955 �0:3685 �0:3685 0:2955 �0:1640

2
666666664

3
777777775
;

X2
¼ diagð99 377 777 1223 1623 1901Þ:

With a constrained structure defined by

A ¼

1 0 �1 0 0 1

1 0 0 �1 0 0

0 �1 0 0 0 1

2
64

3
75,
Fig. 2. The unconstrained structure of Example 2.
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Fig. 3. The unconstrained structure of Example 3.
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the corresponding modal and spectral matrices are

Xc ¼

0:3525 0:3509 0:2513 0:2279 0:1027 0:3536

0:4983 0:0390 0:1155 0:2279 0:1027 �0:3536

0:1823 �0:3898 �0:1697 0:4558 0:2055 0

0:2624 �0:4288 0:2512 0:2279 0:1027 0:3536

0:1531 �0:1949 0:3531 0:2906 �0:6446 0

0:0437 0:0390 0:4549 0:2279 0:1027 �0:3536

2
666666664

3
777777775
;

X2
c ¼ diagð0 0 0 216 1159 1250Þ;

where the three first columns in Xc and the three first diagonal elements in X2
c ; O

2
c;11 ¼ O2

c;22 ¼ O2
c;33 ¼ 0,

should be ignored.

Example 3. The free–free structure in Fig. 3 has the original mass and stiffness matrices

M ¼

m 0 0 0 0 0

0 m 0 0 0 0

0 0 m 0 0 0

0 0 0 m 0 0

0 0 0 0 m 0

0 0 0 0 0 m

2
666666664

3
777777775
; K ¼

k �k 0 0 0 0

�k 2k �k 0 0 0

0 �k 2k �k 0 0

0 0 �k 2k �k 0

0 0 0 �k 2k �k

0 0 0 0 �k k

2
666666664

3
777777775
,

where m ¼ 2 and k ¼ 1000. The spectral matrix is given by

X2
¼ diagð 0 134 500 1000 1500 1866 Þ.

The first natural frequency is equal to zero and the corresponding mode shape corresponds to a rigid body
translation of the structure. Using the same constraints as in the previous example the following modal and
spectral matrices are obtained:

Xc ¼

�0:2603 0:6124 0:4148 �0:2324 0:3536 0:0923

�0:3900 0:2041 0:4318 �0:2324 �0:3536 0:0923

�0:3638 0 0:2787 �0:4647 0 0:1845

�0:3377 �0:2041 0:1255 �0:2324 0:3536 0:0923

�0:1819 0 �0:0446 �0:2610 0 �0:6572

�0:0261 0:2041 �0:2147 �0:2324 �0:3536 0:0923

2
666666664

3
777777775
;

X2
c ¼ diagð0 0 0 109:6 1000 1140:4Þ:

It should be observed that there are three non-zero natural frequencies for the constrained structure. The
constrained structure is not connected to its surroundings and is, in this sense, like the unconstrained structure
a ‘free–free’ structure. It could thus be expected that a zero natural frequency corresponding to a rigid body
mode would appear. This is, however, not the case. The structure has three non-zero natural frequencies. This
is due to the fact that, in this case, the rigid body mode xc;r ¼ ½ 1 1 1 1 1 1 �T does not belong to the
configuration space of the constrained structure since Axc;r ¼ ½ 1 0 0 �T. This seemingly anomalous
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behaviour reflects the fact that the constraints used in this example may be somewhat artificial and hard to
interpret physically.
5. Structures with viscous damping

The formulation (4.10) may be extended to linear systems containing viscous damping. The equation
governing free vibrations of the unconstrained system is assumed to be given by

M€qþ C_qþ Kq ¼ 0, (6.1)

where C is the damping matrix, generally symmetric and positive semi-definite. The corresponding eigenvalue
problem then reads

ðs2Mþ sCþ KÞx ¼ 0, (6.2)

where s 2 C. If we introduce the constraint (4.2), Eq. (6.1) will be replaced by

M€qþ C_qþ Kq ¼ ATk, (6.3)

and from Eq. (6.3) and the constraint condition (4.2) it follows that

0m ¼ A€q ¼ �AM�1C_q� AM�1Kqþ Ck, (6.4)

where the matrix C is defined in Eq. (4.8). Consequently

k ¼ C�1AM�1C_qþ C�1AM�1Kq (6.5)

and by eliminating k in Eq. (6.3) the following equation of motion is obtained:

M€qþ Cc _qþ Kcq ¼ 0, (6.6)

where Kc is given by Eq. (4.11) and Cc is analogously defined by

Cc ¼ QC. (6.7)

The eigenvalue problem corresponding to Eq. (6.6) then reads

ðs2cMþ scCc þ KcÞx ¼ 0. (6.8)

Let Xc ¼ ½xc;1xc;2 . . . xc;n� denote the modal matrix and X2
c ¼ diagðo2

c;1o
2
c;2 . . .o

2
c;nÞ the spectral matrix

corresponding to the eigenvalue problem with zero damping, C ¼ 0, i.e. the constrained undamped natural
modes according to Theorem 1.

Theorem 2. If C is symmetric and positive semi-definite then Xc will be the modal matrix of the eigenvalue

problem (6.6), i.e.

ðs2c;iMþ sc;iCc þ KcÞxc;i ¼ 0, (6.9)

if and only if

UM�1=2CM�1=2UM�1=2KM�1=2U ¼ UM�1=2KM�1=2UM�1=2CM�1=2U, (6.10)

where

U ¼ I�P ¼ I�M�1=2PM1=2 ¼ I�M�1=2AT
ðAM�1AT

Þ
�1AM�1M1=2. (6.11)

The eigenvalues, sc;i, are given by

sc;i ¼ s1c;i ¼ s2c;i ¼ 0; i ¼ 1; . . . ;m, (6.12)
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sc;i ¼

s1c;i ¼ �
xTc;iCxc;i

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxTc;iCxc;iÞ

2

4
� o2

c;i;

s

s2c;i ¼ �
xTc;iCxc;i

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxTc;iCxc;iÞ

2

4
� o2

c;i;

s
8>>>>><
>>>>>:

i ¼ mþ 1; . . . ; n. (6.13)

Proof. If s ¼ 0 then KM;cw ¼ 0, with solutions wi ¼M1=2K�1ai; i ¼ 1; . . . ;m according to Eq. (4.31). The

eigenvalue problem, corresponding to Eq. (4.33), may be written as

ðs2Iþ sDþWÞw ¼ 0, (6.14)

where W is defined by Eq. (4.34) and

D ¼ UM�1=2CM�1=2U 2 Rn�n (6.15)

is a symmetric and positive semi-definite matrix. Now

UM�1=2CM�1=2UM�1=2KM�1=2U ¼ UM�1=2KM�1=2UM�1=2CM�1=2U3DW ¼ WD, (6.16)

and condition (6.10) is then equivalent to the condition that the symmetric matrices D and W commute, which
is true if and only if they have a complete orthonormal set of common eigenvectors, cf. Ref. [10]. From the
proof of Theorem 1

Wwi ¼ o2
c;mþiwmþi; i ¼ 1; . . . ; k. (6.17)

Take

Dwi ¼ d2c;mþiwmþi; i ¼ 1; . . . ; k; d2c;iX0 (6.18)

and then by combining Eqs. (6.14), (6.17) and (6.18)

ðs2Iþ sDþWÞwi ¼ ðs
2 þ sd2c;i þ o2

c;iÞwi ¼ 0. (6.19)

Consequently wi; i ¼ 1; . . . ; n will constitute a complete set of eigenvectors to Eq. (6.14) with the
corresponding eigenvalues

s ¼ si ¼ �0; i ¼ 1; . . . ;m,

s ¼ si ¼ �
d2c;i
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d4c;i
4
� o2

c;i

s
; i ¼ mþ 1; . . . ; n. ð6:20Þ

From Eqs. (6.18), (6.15) and (4.42) it follows that

d2c;i ¼
wT

i Dwi

wT
i wi

¼ wT
i Dwi ¼ wT

i UM�1=2CM�1=2Uwi ¼ wT
i M
�1=2CM�1=2wi ¼ xTc;iCxc;i,

i ¼ mþ 1; . . . ; n ð6:21Þ

This proves the Theorem. &

Remark 1. For Rayleigh damping, i.e. if C ¼ aMþ bK; a;b 2 R, it is a simple matter to demonstrate that
condition (6.10) is satisfied for all constraint matrices A.

Remark 2. If the unconstrained system fulfills the requirement

CM�1K ¼ KM�1C (6.22)

then the modal matrix for eigenvalue problem (6.2) is given by the modal matrix for the un-damped structure,
i.e. X ¼ ½x1x2 . . . xn�. It is conjectured that condition (6.22), in general, does not necessarily imply condition



ARTICLE IN PRESS
P. Lidström, P. Olsson / Journal of Sound and Vibration 301 (2007) 341–354354
(6.10). It is, however, evident that there are structures and accompanying constraints where (6.22) does not
hold but where Eq. (6.10) does hold.

6. Concluding remarks

In this paper it has been demonstrated that the undamped natural vibrations of a constrained linear
structure may be calculated using a generalized eigenvalue problem derived from the equations of motion for
the constrained system involving Lagrangian multipliers. The eigenvalue problem derived is defined by the
mass matrix of the unconstrained structure and a non-symmetric and singular stiffness matrix for the
constrained system.

A condition for the calculation of the damped natural vibrations in terms of the undamped mode shapes
was also formulated for the constrained structure. This property may, for some constraints, be an inheritance
from the unconstrained structure. For other constraints it may appear as a new property. This raises the
following questions. How can constraints be imposed on the damped structure in order for the modal matrix
to be equal to the undamped modal matrix? Is there, for a given structure, a certain class of constraints that
will satisfy this property? How are these constraints characterized?
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